Magnetic Density Separation Magnet — Nb-Ti magnet demonstrator

<u>Gonçalo Tomás</u>¹

Sander Wessel¹, Marc Dhallé¹, Jorick Leferink¹, Jaap Kosse¹, Erik Krooshoop¹, Lars Bossink¹, Anna Kario¹, Lin Wang², Bin Hu³, Peter Rem², Herman ten Kate¹ and Marcel ter Brake¹

¹ University of Twente; ² Technical University of Delft; ³ Umincorp Rotterdam

Outline:

- MDS principle
- Magnet system design
- First cooldown and energizing
- Sorting tests at user: Umincorp company
- Follow up

UNIVERSITY

OF TWENTE.

Magnetic Density Separation

Non-magnetic particles are

sorted by mass density.

UNIVERSITY OF TWENTE.

E. Bakker, P.C. Rem and N. Fraunholcz. "Upgrading mixed polyolefin waste with magnetic density separation". In: Waste Management 29.5 (2009), pp. 1712–1717.

Magnetic Density Separation - principle

UNIVERSITY OF TWENTE.

Vertical decaying magnetic field:

 $|H|(z) \approx H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$

Vertical decaying magnetic force: $F_{mag}(z) \propto |H|(z) M_s$

Equilibrium height based on mass density:

 $F_{mag} = F_g - F_{buoyancy}$ $\mu_0 \nabla_z |\mathbf{H}| (\mathbf{z} = \mathbf{z}_{eq}) \mathbf{M}_s = (\rho_{fluid} - \rho_p) \mathbf{g}$

Magnetic Density Separation - principle

Vertical decaying magnetic field:

 $|H|(z) \approx H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$

Vertical decaying magnetic force: $F_{mag}(z) \propto |H|(z) M_s$

Equilibrium height based on mass density:

 $F_{mag} = F_g - F_{buoyancy}$ $\mu_0 \nabla_z |\mathbf{H}| (\mathbf{z} = \mathbf{z}_{eq}) \mathbf{M}_s = (\rho_{fluid} - \rho_p) \mathbf{g}$

How to use *superconductors* in MDS

$$|H|(z) \approx H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$$

 $F_{mag}(z) \propto \frac{d}{dz} |H|(z) M_s$

 $z \propto \lambda \ln H_0$

How to use *superconductors* in MDS

$$|H|(z) \approx H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$$

 $F_{mag}(z) \propto \frac{d}{dz} |H|(z) M_s$

Why superconducting magnets for MDS

UNIVERSITY OF TWENTE.

 $|H|(z) \approx H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$

 $F_{mag}(z) \propto \frac{d}{dz} |H|(z) M_s$

Higher magnetic **field** (H_0) & Larger periodicity (λ):

- Enhanced separation **resolution** (e.g. similar plastics)
- Deeper usable fluid bed (higher throughput)
- Lower operating expenses, more **dilute** ferrofluid possible
- Wider density **range** (e.g. electronic waste)

Project goal: demonstrator magnet

- 3 Nb-Ti/Cu racetrack coils
- 5 T peak magnetic field
- $\lambda = 600 \text{ mm}$
- Targeted application: electronic waste!

J. J. Kosse et al. "Optimum Coil-System Layout for Magnet-Driven Superconducting Magnetic Density Separation", IEEE Transactions on Magnetics (2021)

J. J. Kosse et al. "Fundamental Electromagnetic Configuration for Generating One-Directional Magnetic Field Gradients", IEEE Transactions on Magnetics (2021)

J. J. Kosse et al. "Mechanical design of a superconducting demonstrator for magnetic density separation", SuST (2021)

J. J. Kosse et al. "Thermal and electrical design of superconducting demonstrator for magnetic density separation", SuST (2022)

System design

Magnet manufacture In-house

From coil (wet) winding 3X

To winding pack assembly,

Magnet assembly,

To cold mass assembly,

Successful 1st cooldown

UNIVERSITY OF TWENTE.

As expected, cool down on 1 cryocooler in 13 days

- Cold mass temperature 5.5 K (1 K higher than expected due to thermal short shield-cold mass)
- 0.7 K margin at design operational current of 300 A

Design current of 300 A reached without training!

UNIVERSITY OF TWENTE.

18 May 2022, we got 2.15 T

- Operational current reached 300 A
- No training quenches observed!

NbTi superconductor properties at operation pointI I_c $I/_{I_c}$ B_{peak} T_{op} T_{cs} 300 A752 A0.45.4 T5.6 K6.3 K

Effective quench protection

Testing the quench:

• Triggering spot heater at the head of Coil 2.

Field decay after initiated Quench

Maximum temperature after quench

Successful preliminary sorting tests at Umincorp

Preliminary tests by: TU Delft, Umincorp & UT

- E-waste: high field enables low-cost sorting !
- Recovery of precious metals from shredded electronic components
- Recovery of metal from shredded cables.

UNIVERSITY

OF TWENTE.

Still this year: Integration with sorting facility at TU DELFT

UNIVERSITY OF TWENTE.

- Sorting tests: Continuous sorting
- > Performance and economical comparison with a permanent magnet of equal size

- Potential user for high-field MDS:
 - Myne, formerly REUKEMA –

"market leader in processing aluminum, copper and electronic waste"

225 MT non-ferreous per year

Follow up

- > Nb-Ti was used for this demonstrator
- However, economical study reveals that:

"high-magnetic field magnet pays itself back"

A ReBCO magnet will allow for high density sorting at lower cost.

> Optimal magnet design CAPEX + OPEX

Assumptions:

- $\rho_{max} = 14\ 000\ kg/m^3$
- Pure $FF_{cost} = 30 \notin L$
- *FF_{lost} = 4.8 L/ton

*This value regards diluted ferrofluid. Pure FF_{lost} is proportional to its saturation magnetization value

Conclusion

UNIVERSITY OF TWENTE.

- First conduction cooled superconducting magnetic density separation system assembled successfully.
- Cool down time 13 days, meets expectations.
- Design current of 300 A at 2 T reached within 1.5% of design.

- Successful preliminary waste sorting tests completed at the Umincorp company facility in Rotterdam.
- Next step Integration with a sorting facility at the University of Delft.
- Future systems, eventually using *ReBCO-coils* can lead to lower operational cost.

MDS prove-of-concept video

UNIVERSITY OF TWENTE.

- For this demonstration, the Ferrofluid could not be used, because it is
- Instead, Manganese(II) chloride tetrahydrate solution MnCl₂·4H₂O as it is paramagnetic and transparent.

