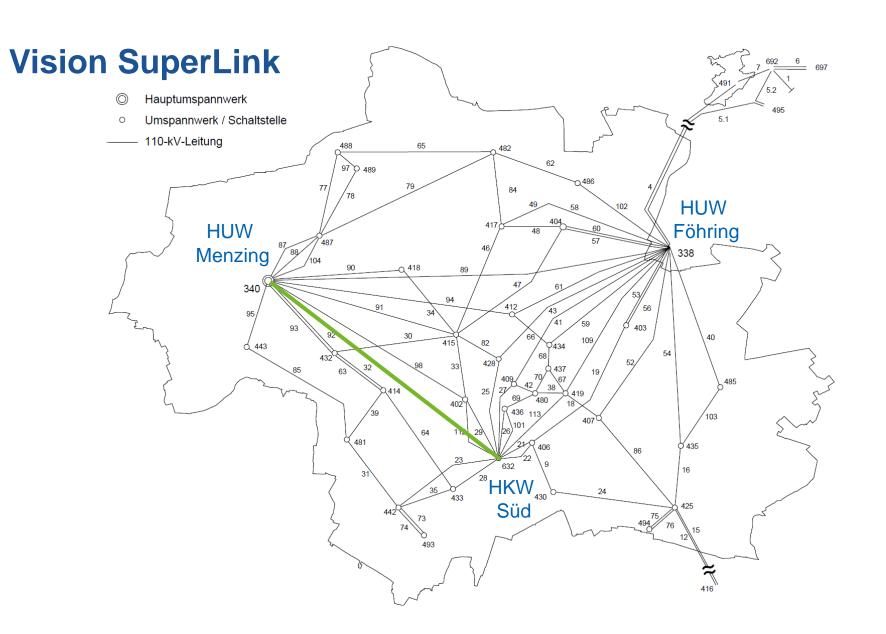


Forschungsprojekt SuperLink 110kV HTS-Kabel für die Energieversorgung von München

Dr. Robert Prinz 20.04.2023

Gefördert durch:



Agenda

- Vorstellung Projekt SuperLink
- Status Projektfortschritt
- Highlights aus der Entwicklung
 - Superlink Auswirkung auf Netzbetrieb (KIT)
 - Optimierung Bandleiterfertigung/ -konfektionierung (THEVA)
 - Neue Kühlungs-Ansätze (LINDE)
 - Kurzschlusstolerantes Kabeldesign (NKT)
 - TE-Beständigkeit der Isolation (FH SWF)
- Ausblick

Gefördert durch:

Vision SuperLink

- ▶ Lösungsmöglichkeiten für 500 MVA-Anbindung vom Kraftwerk Süd nach Hauptumspannwerk Menzing
 - ▶ 400-kV-Freileitung
 - ▶ 400-kV-VPE-Kabel (Tunnel)
 - ▶ 110-kV-VPE-Kabel (5 Systeme á 500mm² Kupfer)
 - ▶ 110-kV-**H**och**T**emperatur**S**upraleiter-Kabel
- Kriterien
 - Realisierbarkeit / Durchführbarkeit
 - Summe Investitionen (Capex)
 - Operative Kosten (Opex)
 - Verlustenergie / Effizienz (v.a. CO₂-Belastung)
 - Gesellschaftliche Akzeptanz (Verkehrsbeeinträchtigung, Magnetfelder, Thermische Außenwirkung)
- ⇒ Ist die HTS-Kabelvariante die beste Lösungsoption?

Gefördert durch:

Projektziele

- Entwicklung eines Supraleiters für die Hochspannungsübertragung (110kV, 500MVA) unter Berücksichtigung der Aspekte:
 - Installationsfähigkeit im Stadtgebiet mit Länge ~ 15km
 - Service- und Betriebskonzept (Reparaturfähigkeit, Wartungsaufwand,...)
 - Integrierbarkeit im Hochspannungsnetz München (Auswirkungen auf das SWM Netz, Verhalten bei Überlast, Kurzschluss,...)
 - Nachweis der Wirtschaftlichkeit für das gesamte Übertragungssystem (Installationskosten, Betriebskosten, Langlebigkeit des Kabels,...)
- Praxistest im HUW Menzing
 - Testlauf: 150m langer Supraleiter im Hochspannungsnetz der SWM
 - ▶ 6 Monate Testbetrieb Start geplant in 2023

Gefördert durch:

Status Projektfortschritt

Gefördert durch:

Projektstatus

Idee 2016 Forschungsantrag 08/ 2019 Kooperationsvertrag 12/ 2020

Auslegung Kühlsystem 03/ 2022 Langzeittest München IV/ 2023 – II/ 2024

Studie SWM/ newGRID Supraleitung 2017

Zuwendungsbescheid 09/ 2020 Grund-konzept & technisches Design 12/ 2021

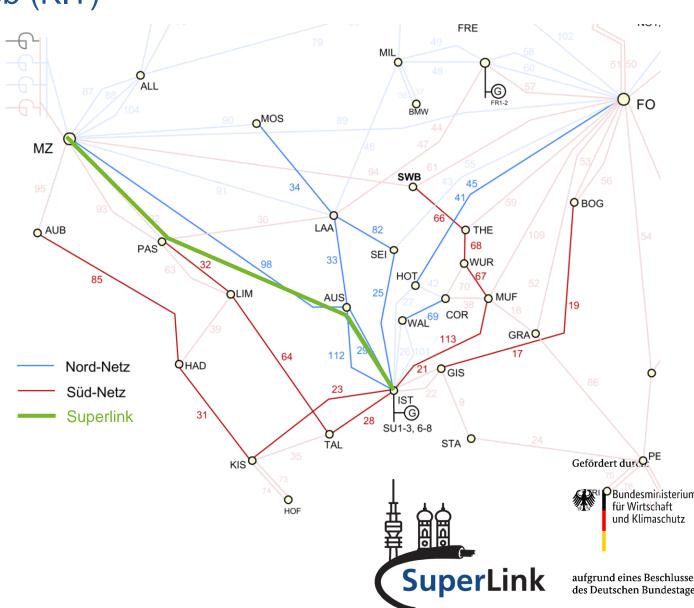
Typtest/ Herstellung Kabel II/ 2023

Abschlussbericht

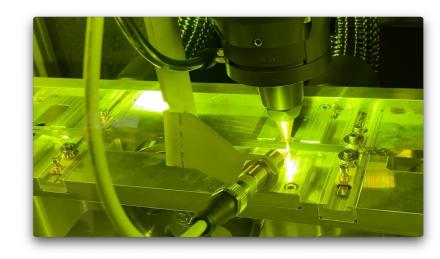
Gefördert durch:

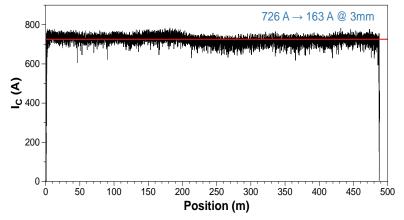
Alle bisher durchgeführten Vortests erfolgreich (z.B. IEC 63075)

Highlights aus der Entwicklung


Gefördert durch:

SuperLink Auswirkung auf Netzbetrieb (KIT)


Simulationsergebnisse mit PowerFactory


- Je nach Einspeiseszenario, Verringerung der Auslastung mehrere
 Kabelverbindungen von z.T. über 40 % beobachtet
- SuperLink Kabel ermöglicht zukünftig heute undenkbare Einspeiseszenarien
- Bisherige Simulation zeigt keine deutliche
 Erhöhung des Kurzschlussstroms

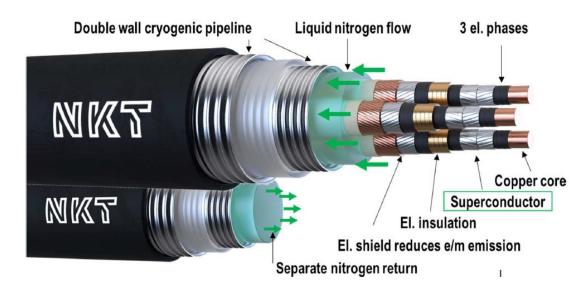
Optimierung Bandleiterfertigung/ -konfektionierung (THEVA)

- Diverse Optimierungen in der Bandleiterfertigung, zum Beispiel:
 - Laminierung
 - Metallisierung der schmalen Leiter
 - Laserschneiden
- Ergebnis bei einer Bandleiterbreite von 3mm:
 - Produktionslänge von 200m
 - Stromtragfähigkeit von 163 A

Gefördert durch:

Neue Kühlungs-Ansätze (LINDE)

- Simulation zeigt Möglichkeit, 15 km Strecke mit einer Zwischenkühlstation zu betreiben
- Verschiedene Szenarien berechnet:
 - Mit und ohne Vorkühlung
 - Verschiedene Kälteanlagenkonzepte
- Ergebnis:
 - Weitere Optimierungen vorstellbar (abhängig von Kryostaten und anderen Faktoren)
 - Wirkungsgrade über 35% (von Carnot) möglich
 - Spezifischer Energieverbrauch für Kühlung von 30 kW/km scheint erreichbar


SuperLink aufgrudes De

Gefördert durch:

und Klimaschutz

Kurzschlusstolerantes Kabeldesign (NKT)

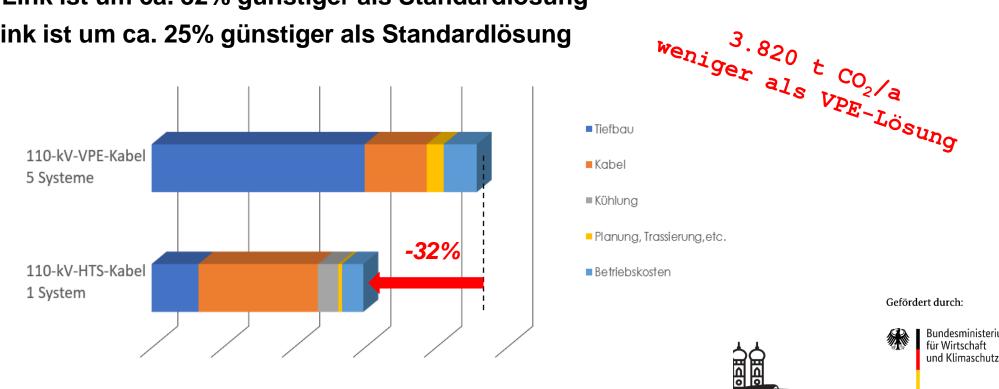
- Kurzschlussfeste HTS-Kabel derzeit noch nicht marktreif
- Kurzschlussfestigkeit heute nur mit Kurzschlussstrombegrenzer (HTS-SCL)
- Projekt SuperLink:
 - Entwicklung eines kurzschlusstoleranten Kabeldesigns
 - Netzanforderung: 40 kA, 1 Sekunde
 - Realisierung über Kupfer-Former und zusätzlichen Kupfer-Schirm
 - HTS-Schirm: Magnetfeldkompensation
 - Minimierung HTS-Bandleiterbedarf

TE-Beständigkeit der Isolation (FH SWF)

- Voruntersuchung zur Präqualifikation der Isolierbänder abgeschlossen
- Prüfadapter für TE-Beanspruchung und Untersuchung der Durchschlagfestigkeit bei Einsatz in FN2 entwickelt
- Prüfgefäß inkl. Durchführung fertiggestellt
- Nächste Schritte:
 - Gezielte Vorschädigung (Alterung) der Isolierbänder durch TE
 - Ermittlung veränderte Isolierfestigkeit
 - Bestimmung des Einflusses auf Lebensdauergerade

Gefördert durch:

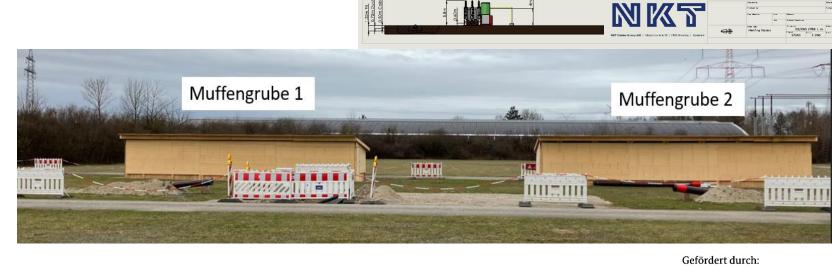
Ausblick


Gefördert durch:

des Deutschen Bundestage

Wirtschaftlichkeit

- Vergleichsszenario
 - 1 System HTS-Kabel vs. 5 Systeme VPE-Kabel (Einleiter)
- Derzeitige Berechnungen zeigen:
 - CAPEX: SuperLink ist um ca. 32% günstiger als Standardlösung
 - OPEX: SuperLink ist um ca. 25% günstiger als Standardlösung



Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

Ausblick

- Nächster entscheidender Projektabschnitt:Test-Installation in HU Menzing
- Test der verschiedenen Komponenten, unter anderem:
 - Montage unter realen Bedingungen.
 - Vor-Ort-Hochspannungsprüfung
 - Dauerlast
 - Lastwechsel
 - Funktion und Steuerung Kühlsystem
- Projektabschluss für Mitte 2024 geplant

Vielen Dank für Ihre Aufmerksamkeit!

Ihr Ansprechpartner

Dr. Robert Prinz
Leitung Planung und Bau – Strominfrastruktur
prinz.robert@swm.de

Gefördert durch:

